Rhythmic coupling among cells in the suprachiasmatic nucleus.
نویسنده
چکیده
In mammals, the part of the nervous system responsible for most circadian behavior can be localized to a pair of structures in the hypothalamus known as the suprachiasmatic nucleus (SCN). Previous studies suggest that the basic mechanism responsible for the generation of these rhythms is intrinsic to individual cells. There is also evidence that the cells within the SCN are coupled to one another and that this coupling is important for the normal functioning of the circadian system. One mechanism that mediates coordinated electrical activity is direct electrical connections between cells formed by gap junctions. In the present study, we used a brain slice preparation to show that developing SCN cells are dye coupled. Dye coupling was observed in both the ventrolateral and dorsomedial subdivisions of the SCN and was blocked by application of a gap junction inhibitor, halothane. Dye coupling in the SCN appears to be regulated by activity-dependent mechanisms as both tetrodotoxin and the GABA(A) agonist muscimol inhibited the extent of coupling. Furthermore, acute hyperpolarization of the membrane potential of the original biocytin-filled neuron decreased the extent of coupling. SCN cells were extensively dye coupled during the day when the cells exhibit synchronous neural activity but were minimally dye coupled during the night when the cells are electrically silent. Immunocytochemical analysis provides evidence that a gap-junction-forming protein, connexin32, is expressed in the SCN of postnatal animals. Together the results are consistent with a model in which gap junctions provide a means to couple SCN neurons on a circadian basis.
منابع مشابه
Gates and oscillators: a network model of the brain clock.
The suprachiasmatic nuclei (SCN) control circadian oscillations of physiology and behavior. Measurements of electrical activity and of gene expression indicate that these heterogeneous structures are composed of both rhythmic and nonrhythmic cells. A fundamental question with regard to the organization of the circadian system is how the SCN achieve a coherent output while their constituent inde...
متن کاملMelatonin Modulates Intercellular Communication among Immortalized Rat Suprachiasmatic Nucleus Cells
Melatonin Modulates Intercellular Communication among Immortalized Rat Suprachiasmatic Nucleus Cells. (December 2007) Kimberly Yvonne Cox, B.S., University of Houston-Clear Lake Chair of Advisory Committee: Dr. Mark J. Zoran The mammalian brain contains a regulatory center in the diencephalic region known as the hypothalamus that plays a critical role in physiological homeostasis, and contains ...
متن کاملVasopressin immunoreactivity, but not vasoactive intestinal polypeptide, correlates with expression of circadian rhythmicity in the suprachiasmatic nucleus of voles.
In common voles (Microtus arvalis), natural variation in locomotor behavior can be exploited to study the mechanism of pacemaker control over circadian timing of behavior. Here we studied daily patterns in numbers of neuropeptide immunoreactive suprachiasmatic nucleus neurons in rhythmic, weakly rhythmic, and non-rhythmic voles. Circadian rhythmic voles showed circadian variation in numbers of ...
متن کاملSmall-world network models of intercellular coupling predict enhanced synchronization in the suprachiasmatic nucleus.
The suprachiasmatic nucleus (SCN) of the hypothalamus is a multioscillator system that drives daily rhythms in mammalian behavior and physiology. Based on recent data implicating vasoactive intestinal polypeptide (VIP) as the key intercellular synchronizing agent, we developed a multicellular SCN model to investigate the effects of cellular heterogeneity and intercellular connectivity on circad...
متن کاملCircadian profiling of the transcriptome in NIH/3T3 fibroblasts: comparison with rhythmic gene expression in SCN2.2 cells and the rat SCN.
To screen for output signals that may distinguish the pacemaker in the mammalian suprachiasmatic nucleus (SCN) from peripheral-type oscillators in which the canonical clockworks are similarly regulated in a circadian manner, the rhythmic behavior of the transcriptome in forskolin-stimulated NIH/3T3 fibroblasts was analyzed and compared relative to SCN2.2 cells in vitro and the rat SCN. Similar ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurobiology
دوره 43 4 شماره
صفحات -
تاریخ انتشار 2000